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I 

CLOSED  COLLISION  PATHS I N  A PLANE CIRCULAR 
FESTRICTED THFELBODY PROBL;EM 

G.A.Krasinskiy 

The paths of  double co l l i s ion   wi th  a grea te r  mass i n   t h e  
plane  circular  restricted  three-body  problem  are  studied. 
The existence  of  certain  types of paths  both s p e t r i c  and 
asymmetric wi th   respec t   to   the  x-axis i s  shoim by the  small- 
parameter method. The method of  constructing  these  paths 
i s  given. 

In this paper, we s tudy  the  paths  of double  coll ision  with a la rge  body i n  
the  two-dimensional c i r cu la r   r e s t r i c t ed  three-body  problem. These paths are of 
importance for astronautics,  as orbits  along which f l i g h t s  around the  moon and 
re turn   to   the   ear th   a re   poss ib le   u t i l i z ing   on ly   the   g rav i ta t iona l   forces  of both 
ear th  and moon. Mathematically,  the  problem  reduces 
equations  of  the  two-dimensional  circular  restricted 

where U = - 1 - P  + 
2/(x + Cl)” + Y” 

coinciding  with  the  posi t ion 

to   so lv ing  a system  of 
problem 

w 
.. - , with boundary conditions 

.J(x + p - 1)” + y” 
of grea te r  masses 

x (0)  = x (T) = -p, 

y (0) =- y (.) = 0. 

Since, in  the  solution  being  sought,   the  r ight-hand  side of  eq.( 1) becomes 
infinite, the Levi-Civita regularizing  variables are employed. 

The so lu t ion  of t h e  boundary-value  problem [ eqs. (l), (2) 1 i s  sought i n   t h e  
form of power series of t he  small parameter p e  For p = 0, the  solut ion of t h e  
corresponding two-body problem  depends  on  one arbi t rary  parameter  w (longitude 
of  perihelion),  as a consequence of which the  construct ion of the  successive 
a p p r o a t i o n s  encounters  the same d i f f i c u l t y  as i n   t h e   t h e o r y  of periodic  solu- 
t ions,  namely, the  vanishing of some determinant. For this reason  the  solution 
of t he  problem (l), (2) will not   be  val id   for  a l l  values of w but  only for those 
t h a t  satisfy a certain  equation. Having constructed series formally  satisfying 

3s Numbers given i n   t h e  margin  indicate  pagination i n   t h e   o r i g i n a l   f o r e i g n  text. 
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eqs . (I), (2), we can  easily show t h e i r  oonvergence by methods analogous to   t hose  
used in   t he   t heo ry  of  periodic  solutions. 

1. Iiimiting Case: CL = 0 

Let us change, i n  eqs . (I), ( 2), t o  Levi-Civita regularizing  variables by 
means of the  formulas  (Wintner, 1941) : 

x4-p = p 2 -  q', y = 2pq, dt = 4 ($4- q 2 )  ds. 

where 

Here we m u s t  s t ipu la te   tha t   the   equal i ty  &(s2 + q )  - U = - h = 0 be sa t i s -  2 

f i ed  i n  solving the  system (3 ) .  The boundary conditions  with  the new variables 
read as follows: 

where CT is  the  fly-around  time.  Equation (3) can be w r i t t e n   i n  Hamiltonian form 

where 

We will denote  p, q, P, Q respectively by x1, x2, x3, x4, and wri te  eq.( 5)  
as 

f j = X d  ( X I ,  x2, x3, xd, c, P) j=1, 2,  3, 4, ( 7 )  
X ]  (0) = x1 (0) = x2 (0) = x2 (a) = 0. (8) 

Let us f ind   the   so lu t ion  of the  problem (3) and (4 )  f o r  p = 0. Here, 
eqs.(3), f o r  p = 0, have the  form 

2 



p - 8 (P2" q') q = 12 ($4- q"2p - 4cp, 
q"8(p"q~)p=12(p2"q2)2q-4Cq. i 

T h i s  system has two in t eg ra l s  

Let US introduce  the  polar  coordinates 

p = p sin 6 ,  q =p cos 8. 

Subst i tut ing  eq.( l l )   in to   eq.( lO),  we obtain 

p2b - 2p' = b ,  
p2 -t p2h2 = 4pG - 4cpZ -+- 8 4 h .  

. Since p = 0 f o r  s = 0, i t  follows from  eq.(12) t h a t  b = 0. Substi tuting 
8 = 2p2 i n t o  eq.( 13) will give 

P 

Let us substi ' tute  the  variables p = d-$- + "&- s i n  E /156 

where n is the  mean diurnal  motion. 

Making use of t h e  e qual i ty  e' = 2p2 , we f ind  8 

sin 4011s 
n (15)  

Thus, the  solut ion of t he  boundary-value  problem (3) and ( b ) ,  f o r  p = 0, 
depends  on two arbi t rary  constants  w and h. For h = 0, we obtain  the  solut ion 
of the two-body problem sa t i s fy ing   t he  boundary condition (4 )  

We see from  eq.(l!+) that  the  fly-around  time (5 i s  connected t o   t h e  semi- 

major axis a by the  formula (5 = - k, where k i s  some integer .  'IT 

2an 
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2. Determination of First-Order  P-erturbations 

To determine  the  perturbations we must f ind  the  general   solut ion  of  a set 
of homogeneous variational  equations 

where r = p2 + cf , p, q are   calculated on the  basis  of  eqs . ( 11) , (a), ( 15) f o r  
h = 0. The system (16) has two tr ivial  solut ions 

Consequently, the   th i rd   par t icu lar   so lu t ion  of the  system (13) will be 

By a d i r ec t  check we can  convince  ourselves  that  the  fourth  solution is  /157 

n 

It i s  easy  to  demonstrate  that  these  solutions are linearly  independent. 
Let US seek  the  solution of the problem (71 ,  (8) i n   t h e  form of a power s e r i e s  
of CI 

Let us also  consider  the  Jacobi  constant c on  the  r.h.s. of eqs.(7), which 
can  be  determined i n   t h e  form of a series 

k 



'I 

1=1 

Let us set  p = 0. The functions xi") = p, x$') are calculated,  as shown 
above,  from  eqs.( ll), (z), (15), while  the  functions ~(3') , xp) , as follows 
from eq.( 5), are obtained  over  the  formulas 

= p = ~ ( 0 )  - 24O)r, ~ ( 0 )  = Q = if)+ 2xjO)r. 
1 4 (21) 

The functions xii (i > 0 )  satisfy the  system  of  l inear  differential  
equations 

where 

a l s o   s a t i s f y   t h e  boundary  conditions 

Knowing the   so lu t ion  of the  variational  system (16), we e a s i l y   f i n d   a l l  
l inearly  independent  solutions of the homogeneous system 

I n  this case, 

The last two expressions are obtained by var ia t ion  of  eq.(  21). 

Let us now f ind  xi1' . For this, we must f i nd   t he   pa r t i cu la r   so lu t ion  of 
the  system (22) f o r  i = 1. Using the   va r i a t iona l  method of arbitrary  parameters,  
we will ob ta in   t he   pa r t i cu la r   so lu t ion   i n   t he  form 

To f ind   CY^, we derived  the system /158 
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where 

It i s  known that ,   for   canonical  systems, the  quant i t ies  z k f  form the matrix 
of the   so lu t ions   for   the  system of equations  conjugate  to  the  system  (25) 
(Malkin,  1956), i .e., for   equat ions 

The basic  property -of conjugate  systems i s  that  the  expression 4 J = 
= C z k i y k  does  not depend on  time  (Malkin, 1956). For canonical  equations, 

th i s   p roper ty  i s  equivalent to  the  t ime-invariance of the  Lagrange brackets Ai, 
(Subbotin, 1937). It is  obvious  from the  determination  that  AiJ  = - A, . kt 
us  then  multiply eq.(  28)  by z k j  and c a r r y   o u t   t h e   s m a t i o n   f o r  k from 1 t o  4. 
The obtained system will be  equivalent  to  the init ial  system,  but  with  constant 
coef f ic ien ts   for  Gi : 

k 

2 aiAji = f j ,  
i=1 

where 

Since  the  coefficients A i ,  a re  independent  of time, we will s e t  s = 0 i n  
calculat ing them. 

Making use  of  eqs .( U), (w), (15), it i s  easy to   ca l cu la t e   t he  matrix of 
t h e  system  (28)  for s = 0. This yields  the  following matrix: 
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Having formed the  matrix IIAjl 11, we obtain 

Thus, we have the  following system: 

- 4 fiu, = x2f3 - x,f4 , 
S a 3  = i, fa + 

Consequently, 

where cyI are  calculated by eqs . ( 3 3 )  and a\') are arbi t rary  constants  We w i l l  
arrange  these  constants  such t h a t  the   equal i t i es  

X?) (0) = X!) (6) = x?) (G) = x?) (G)  = 0, ( 3 4 )  

a re   s a t i s f i ed .  

o r  Q ' z ( 0 )  = (Yq( (J)  = 0.  5-1 this case a i l ) ,  a p '  remain indeterminate. 

Thus, f o r   t h e  system  of  equations  (22) t o  have a solut ion  sat isfying  the 
conditions (24.) f o r  i = 1, it i s  necessary and suf f ic ien t   tha t   the  two following 
conditions  be  satisfied: 
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0 0 

0 

In   these  equat ions,   le t   us  set h = 0 and re turn   to   the   var iab les  x, 9, t. 
We obtain 

From eq.(38) we f ind  w ; subs t i tu t ing  this value  into  eq.(39) we obtain  the 
value of  c1,  which i s  the  correction  to  Jacobi’s  constant.  

3. Construction  of  the Formal Solution 

On fulf i l l ing  the  condi t ions  (38) ,   (39)   the  solut ion of eqs.(22),   for i = 
= 1, which satisfies the  conditions (24) depends  on two arbi t rary  constants  
a\’) , A’) , which remain  indeterminate. These arbi t rary  constants  are deter- 
mined from the  conditions  of  solvabili ty of t h e  boundary-value  problem f o r  
equations  of  the  second  approximation. The value of c2 i s  determined  simul- 
taneously. The a rb i t ra ry   cons tan ts   a r i s ing   in  this case are determined  from the  
conditions  of  solvabili ty of t h e  boundary-value  problem for  equations of t h e  
t h i r d  approximation, and so  on. We will show i n   g r e a t e r   d e t a i l  how this i s  done. 
The following  transformations are completely  analogous t o   t h o s e  used i n   t h e  
theory of periodic  solutions (Malkin, 1956). Let us assume tha t  we determined 
a l l  functions xi1) (s = 1 . . . 4) up t o   t h e  k-th  order  inclusive,  that  they satis- 
fy  eqs .( 22)  and t h e  boundary conditions (a), and t h a t  we had determined a l l  
constants C i  , i = 1, . . . , k. 

Let us  then  enumerate  the  solution  of  variational  equations,  such  that 

- ax, ax, Y j l  - 7, Y j 2  - ah ~n this case, yJ1(0) = yj I(.) = yjS(01 = yj2 (0) = - 

= 0 ( j = 1, 2). The functions will have the  form 
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where Z!i) i s  the   par t icu lar   so lu t ion   sa t i s fy ing   the  boundary conditions,  while 

aii , aki are  certain  constants.  The quant i t ies   a i i )  , aLi will be  considered 

as already  determined  for i = 1 . . . k - 1, while aik) , akk) are  s t i l l  t o  be de- 
termined  from  the  solvability  conditions of t he  boundary-value  problem f o r  equa- 
t i ons  of t he  ( k  + l)-th  approximation. The functions FJ ( k + l )  have the  following 
structure:  

We will denote  the  parameters w, h by hl ,  ha respectively;  then yp J = 

- - " ( j = 1, 2) , and F, ( k + l )  will take  the form 
ah3 

kt us now calculate  the  expression /16 1 

where z J 1  , zJ2  are  solutions of the  conjugate  system  corresponding t o   t h e  solu- 
t ions of y j  , yJ2  of the   var ia t iona l  system. I n   t h e  same manner as used i n  

9 



Section 2 f o r  k = 0, i t  i s  easy t o  show %hat  equating  the  quantities d:+l) t o  
zero i s  a necessary and sufficient  condition for the   so lvabi l i ty  of our boundary- 
value problem for  equations of t he  (k + 1)-th  approximation. We note  that x") 
satisfy the  equations 

Let  us  then  differentiate  both  sides  with  respect  to h3 

Using this equality, we can  rewrite  the  equality K, = 0 i n   t h e  follow- (k+l) 

ing  mnner:  

where 

If we in tegra te  by p a r t s  and take  into  account  that  Z g n  s a t i s fy   t he  conju- 
gate system of equations, we obtain 

= 0 @ = 3,  4 m, n = 1, 2. Therefore, 

On the  other hand, we have 

10 



and thus  a lso 

The quant i t ies  A13 and Am are   eas i ly   ca lcu la ted   d i rec t ly  
a U 

An= 0 J ["4x, ["4x1x2+4x,x2] ds = 0, 4x dA.1 - 
0 

/162 

(48) 

(49) 

kt us write  out  the  terms f o r  pk 

y ( 0 )  1, (0) -1- $ w 2  (0)  = By, 

where BLk) depends only on ?ii) (0),  i < k. 

Substituting  here  the  expression  for x(jk), we obtain 

[& (0) 1, (0) + i,, (0) 1, (O)] 4 ULt)  [i], (0) x, (0) 4 !),, (0) x, (O)] = B p .  

The coef f ic ien t   for  aik) i s  equal t o  G2(0) G1(0) - G1(O) G z ( 0 )  = 0,  and 
for ap) it i s  equal t o  ?l(O)" + G2(0)2 = 8.  

Finally, we have a system  of three  l inear   equat ions  with  three unknowns 

11 



equation PI (w, 0) = 0, then this determinant is  nonzero. 

It remains t o  exafnine the  case  k = 1 when equations k e )  = 0 contain terms 
quadratic  with  regard t o  as1' . These terms will enter   the  expressions  for  k(,") 
i n   t he   fo l lowing  form: 

However, it i s  easy t o  demonstrate  that AJ m n  = 0. For this, we must per- 
form the same calculat ions as fo r   t he   coe f f i c i en t s  Am, and take  into  account 
t h a t  yam satisfy the  var ia t ional   equat ions which are homogeneous, as a conse- 

quence of  which A j m n  = - a (E ypmZgm)lo = constlo = 0. The l i n e a r   p a r t  of t h e  

equations, for  k = 1, coincides   with  the  l inear   par t  of eqs.(51) f o r  k > 1. 

U U 

ah J 

~hus, the  quantit,ies a i k ) ,  ,ak),  ck+l satisfy a l i n e a r  system of  equations 
whose  homogeneous part   does  not depend  on t h e  number k and  has a nonzero  deter- 
minant. 

Thus, having  used t h e  above method we obtained series satisfying  eq.(7) and 
t h e  boundary conditions (e), the   coef f ic ien ts  of these series being  determined 
un ipe ly .  If we prove  the  existence of the   so lu t ion   of   the  problem (7), (e) ,  
t h e  convergence  of the  obtained  ser ies  will also  be  proved. 

4. Proof  of the  Existence  of a Solution - .  t o  Problem (7) ,  (8 )  /163 
kt XJ = XI ( s ,  Y1, y2, y3, y4, c, 1-1) be the  general   solution of the  system 

of equations  (7)  such  that 

xj (0, 71, 7 2 1  73 ,  74, c, tL) =-f j*  (52) 

kt us seek   the   par t icu lar   so lu t ion   sa t i s fy ing   the  boundary conditions (8 ) .  
Having subst i tuted s = 0, we immediately f i n d   t h a t  y1 = y2 = 0. 

For s = o, we obtain  the  following  system  of  equations: 
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I n  this case, co = - 4-0” k = 0, 1, 2, ... . Equation H = 0, f o r  p = 0, will 
I? k” 

t ake   t he  form 

~ ( 7 ~  1 “2 + ~ f ) - - 4 = - “ 0 .  2 2 -  h 

Let us  demonstrate  that ,   for  sufficiently small values  of p, eqs.(53), (54) 
when fu l f i l l i ng   ce r t a in   cond i t ions  will determine  the  functions y3, y4, c ana- 
l y t i c   w i th   r e spec t   t o  1-1. Let PI = y3 - y3 , Pa = y4 - y4 , c1 = c - coo 
Then, the  equations xl(o) = x2(o)  = 0 can be represented i n   t h e  form 

(0) (0) 

= 0, c = Co. 

We w i l l  divide  eqs .( 58) by p and make p tend t o  zero. 

= J i m  - and taking  into  account eq.( 56), we obtain 
P 

Assuming v = 

If yg, y:, v sat isfy  these  equat ions and if ’(’%’ ”’ ”)  # 0, then  eqs =( 53), 
P(Y03, Yo4, 4 

(54) actually  determine,  for small p, the   funct ions y3, y4 ,  c analyt ic   with re- 
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t o  prove  the  equivalence  of  the  obtained  conditions  with  the  previously  derived 
conditions (36) ,  (37). We note   that  XI (s) and x2( s) s a t i s f y  eqs.( 7). Let /164. 
us then   d i f fe ren t ia te   these   equat ions   wi th   respec t   to  p, f o r  p = 0 ,  

Furthermore,  from  eq.(52), i f  we d i f f e ren t i a t e   w i th   r e spec t   t o  p, we obtain 

Consequently, it i s  necessary to   f ind   the   par t icu lar   so lu t ion   of   eqs . (60)  
with  zero init ial  data.  As was shown, such  a  solution  has  the form 

and the  analogous  expression  for - . The expressions  for - 1 and 
ap u=o 

are not needed. Set t ing s = 0, after easy  calculations, we have 

where 

a=-k+-w, 2 x  

Equations (59) are w r i t t e n   i n   t h e  form 



Let us  multiply  the first equation by cos a ,  the  second by s i n  a and then 
subtract  one from the  other. This yie lds  

d2- 4 I ,  =o. (63) 

Having multiplied  the first by s i n  a ,  the  second by cos a ,  and having /165 
added both, we have 

It remains to   ca l cu la t e  '(% ' 2 9  " . Using the  equal i t ies  (631, 
(0) D ( Y i O )  , Y4 9 4 

(64) ,  we have 

I 4 

Hence, 

I. 



Thus, the  conditions ( 3 8 ) ,   ( 3 9 ) ,  which are necessary and s u f f i c i e n t   f o r  
constructing  the  formal series, are at t h e  same time necessary and su f f i c i en t  
condi t ions   for   the   eds tence   o f   the   so lu t ion   to   the  problem. 

Since  the  coeff ic ients  of t h e  formal series are determined  uniquely, it 
follows  that   these series converge. 

5. Invest igat ion  of   the.   Fundmeal   Equat iog 13.8) 

Let  us examine the  fundamental  equation (38) 

0 fy(, -$)"=O. 

This  equation  can  be  rewritten in   t he   fo l lowing  form: 

where /166 

r ( t ) = a ( l - c o s E ) ,  t= n , T = - k  k=I, 2, 3.. . E - s i n  E 2a 
n 

It i s  ob-lious tha t  r ( t )  is  symmetric wi th   respec t   to   the  middle  of the  in-  
t e r v a l  [0, 71 * If we s e l ec t  w 

such t h a t   s i n  (w + t ) d t  = 0, 

then  the  function  cos (W + t )  
w i l l  a l s o  be symmetric with  re- 

spect   to   the  point  -. It fol- 

lows t h a t ,   f o r  such  values of w, 
I ( w )  = 0. The generating solu- 
tion  corresponding t o   t h e s e  
values will be  symmetric with 
respec t   to   the  x-axis. 

7 

I 
0 

W =a- 2 z 7 

2 

Thus, we have two t r ivial  
I 

Fig.1 Symmetric Orbits. 

roots W 1  = - - 
The corresponding  path i s  p lo t t ed  
i n  Fig.1. 

7 
2 ' w 2 = n - - 0  

7 
2 

The paths were obtained by Levi-Civita (1904) by a d i f fe ren t  method. 

It i s  easy  to  prove  the  existence of solutions,  asymmetric with  respect   to  
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t h e  x-axis. I n   f a c t ,  l e t  7 = - k be small; i n  this case a w i l l  a l so  be 

small. It i s  obvious that   the   curve x = r(t) cos (W + t),  y ( t )  = -r(t) s i n  (W + 
+ t )  l ies  en t i re ly   wi th in   the   angle  made by tangents   to  this curve i f  t = 0 and 

t = 7 = - k. The osculating  point  of  the  slope of these  tangents,   for t = 0 

\ and t = 7, i s  -tan w and -tan (w + T), respectively.  We w i l l  set w = 0. Then, 

2rr 
n 

2rr 
n 

for su f f i c i en t ly  small values  of 7, the  curve x = r(t) cos (w + t) ,  y = -r(t) 
s i n  (W + t )  l i e s  en t i re ly   wi th in   the  lower half-plane  within a c i r c l e  of unit 
radius  with a center a t  (1, 0). Consequently, I(0) < 0. Having set w = n/2, we 
find  that   the  corresponding  curve  also l i es  within  the  lower  half-plane  but  out- 

s ide   the   ind ica ted   c i rc le ,  i .e., I(+) > 0. 

/’ 
/ \ 

/ i 

/--x 
\ 

I 
I L 

Fig.2  Orbits of t he  Second Kind. Fig.3  Orbits  of  the T h i r d  Kind. 
The broken l ine   g ives   the  sym- 
metr ic   o rb i t  and the   so l id   l i ne ,  

t h e   o r b i t  of the  third  kind.  

Thus there  exists a root  of the  equation I ( w )  = 0 loca ted   i n   t he   i n -  /167 

terval from 0 t o  - 0  

2 ’  
since  eq. (3) does  not  change when replacing y by -y, it 

follows  that ,  on the  curve  symnetr ic   to   that   obtained  with  respect   to   the x-axis, 
I ( w )  will also  be equal  to  zero.   Figure 2 gives  an example  of the  corresponding 
paths  

Tr 

Finally,  we can  prove  the  existence  of s t i l l  another, more in te res t ing ,  

type of  solution. Let 7 = k and k 2 2, a > 0.5. Equation I(w) = 0 can n 
17  



then be rewri t ten as 

where 

Q =  J(-x+--)df. 1 
r2 

0 / 

Since a > 0.5, a change  of 0 will cause  the  function @(w) t o  become infinite f o r  
certain  values  of W. Consequently,  between two such  successive  values  the 
function @(w) has a t  least one minimum, i.e.,  I(w) = 0. Generally  speaking,  the 
corresponding  curves, f o r  k > 1, are  not symmetric (Fig.3). I n   f a c t ,  i f  a 0.5 
from above, it Is obvious tha t   t he  two successive  values of w1 and w2, f o r  which 
@(w) = a, tend t o  a common limit. This limit is determined  from  the  conditions: 

r ( t ,  w )  = 0, r2(t, w )  = 0, a = 0.5 and is equal   to  - -. Since  the  root  of  the 

equation I ( w )  = 0 l i e s  between W 1  and w2, then this root   a l so   t ends   to  - as 

a + 0.5; thus ,   for  k # 1, it does  not equal the  roots  corresponding t o   t h e  sym- 
metric  solutions.  

7T 
n 

7T 

In  conclusion I wish  to  thank G.A.Mennan, under whose supervision this 
paper was wri t ten.  
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